Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ambio ; 46(1): 88-97, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27352360

RESUMO

The failure to achieve fisheries management objectives has been broadly discussed in international meetings. Measuring the effects of fishery regulations is difficult due to the lack of detailed information. The yellowfin tuna fishery in the eastern Pacific Ocean offers an opportunity to evaluate the fishers' responses to temporal regulations. We used data from observers on-board Mexican purse-seine fleet, which is the main fleet fishing on dolphin-associated tuna schools. In 2002, the Inter-American Tropical Tuna Commission implemented a closed season to reduce fishing effort for this fishery. For the period 1992-2008, we analysed three fishery indicators using generalized estimating equations to evaluate the fishers' response to the closure. We found that purse-seiners decreased their time spent in port, increased their fishing sets, and maintained their proportion of successful fishing sets. Our results highlight the relevance of accounting for the fisher behaviour to understand fisheries dynamics when establishing management regulations.


Assuntos
Conservação dos Recursos Naturais/métodos , Pesqueiros/organização & administração , Regulamentação Governamental , Navios , Atum/crescimento & desenvolvimento , Animais , Conservação dos Recursos Naturais/legislação & jurisprudência , Pesqueiros/legislação & jurisprudência , México , Oceano Pacífico , Estações do Ano , Clima Tropical
3.
PLoS One ; 7(10): e48583, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119063

RESUMO

The intrinsic population growth rate (r) of the surplus production function used in the biomass dynamic model and the steepness (h) of the stock-recruitment relationship used in age-structured population dynamics models are two key parameters in fish stock assessment. There is generally insufficient information in the data to estimate these parameters that thus have to be constrained. We developed methods to directly estimate the probability distributions of r and h for the Atlantic bluefin tuna (Thunnus thynnus, Scombridae), using all available biological and ecological information. We examined the existing literature to define appropriate probability distributions of key life history parameters associated with intrinsic growth rate and steepness, paying particular attention to the natural mortality for early life history stages. The estimated probability distribution of the population intrinsic growth rate was weakly informative, with an estimated mean r = 0.77 (±0.53) and an interquartile range of (0.34, 1.12). The estimated distribution of h was more informative, but also strongly asymmetric with an estimated mean h = 0.89 (±0.20) and a median of 0.99. We note that these two key demographic parameters strongly depend on the distribution of early life history mortality rate (M(0)), which is known to exhibit high year-to-year variations. This variability results in a widely spread distribution of M(0) that affects the distribution of the intrinsic population growth rate and further makes the spawning stock biomass an inadequate proxy to predict recruitment levels.


Assuntos
Algoritmos , Pesqueiros/estatística & dados numéricos , Modelos Biológicos , Atum/crescimento & desenvolvimento , Animais , Oceano Atlântico , Biomassa , Ecossistema , Feminino , Fertilidade , Pesqueiros/métodos , Estágios do Ciclo de Vida , Masculino , Dinâmica Populacional , Crescimento Demográfico , Processos Estocásticos , Fatores de Tempo
4.
Rev. biol. trop ; 51(1): 213-219, mar. 2003. tab, mapas, graf
Artigo em Espanhol | LILACS | ID: lil-365964

RESUMO

The longline hooks suspension depth was estimated using the Mechanic Imitation of Flexible Systems method. The vertical distribution of tunas and billfish was determined by the relative abundance index, obtained from the catch by 11 to 25 m -long longline vessels, -based at Cumaná, Venezuela, South-eastern Caribbean Sea in depths of 65 to 142 m. The CPUE was evaluated per species, according to depth. High values were found for most of the captured species in the layer from 105 to 125 m. Yellowfin tuna (Thunnus albacares) showed the highest yield (3.37 fish/100 hooks) and blue marlin (Makaira nigricans) the lowest (0.04 fish/100 hooks). However, the statistical comparison did not allow to reject the hypothesis of lack of depth efect (Kruskal-Wallis p > .05), and demonstrated a homogeneous distribution of yellowfin tuna (Thunnus albacares), albacore (Thunnus alalunga), bigeye tuna (Thunnus obesus), sailfish (Istiophorus albicans), white marlin (Tetrapturus albidus) and blue marlin (Makaira nigricans) in the water column. The conclusion is that fish concentration in the Southern border of the Caribbean Sea is possibly due to several hydroclimatic factors--which affect tuna and billfish catching--such as water temperature and dissolved oxygen concentration which limit the distribution according to depth.


Assuntos
Animais , Perciformes , Região do Caribe , Pesqueiros , Densidade Demográfica , Atum
5.
Rev Biol Trop ; 51(1): 213-9, 2003 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-15162696

RESUMO

The longline hooks suspension depth was estimated using the Mechanic Imitation of Flexible Systems method. The vertical distribution of tunas and billfish was determined by the relative abundance index, obtained from the catch by 11 to 25 m -long longline vessels, -based at Cumaná, Venezuela, South-eastern Caribbean Sea in depths of 65 to 142 m. The CPUE was evaluated per species, according to depth. High values were found for most of the captured species in the layer from 105 to 125 m. Yellowfin tuna (Thunnus albacares) showed the highest yield (3.37 fish/100 hooks) and blue marlin (Makaira nigricans) the lowest (0.04 fish/100 hooks). However, the statistical comparison did not allow to reject the hypothesis of lack of depth efect (Kruskal-Wallis p > .05), and demonstrated a homogeneous distribution of yellowfin tuna (Thunnus albacares), albacore (Thunnus alalunga), bigeye tuna (Thunnus obesus), sailfish (Istiophorus albicans), white marlin (Tetrapturus albidus) and blue marlin (Makaira nigricans) in the water column. The conclusion is that fish concentration in the Southern border of the Caribbean Sea is possibly due to several hydroclimatic factors--which affect tuna and billfish catching--such as water temperature and dissolved oxygen concentration which limit the distribution according to depth.


Assuntos
Perciformes/fisiologia , Animais , Região do Caribe , Pesqueiros , Densidade Demográfica , Atum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...